

Performance issues
related to migration

from Oracle

Pavel Stěhule

Pavel Stěhule
● PostgreSQL extensions

– Orafce, plpgsql_check
● Pager pspg
● Some patches to Postgres

– Variadic arguments, default parameters,
mixed and named notation for passing parameters

– Functions format, xmltable, …
● Some patches to PLpgSQL

– RETURN QUERY
– GET STACKED DIAGNOSTICS

Performance issues

● Are expected
● When you migrate Oracle‘s

optimized application to Postgres
● It‘s different database

Possible problems
● Different storage
● Different planner
● Different optimizer
● Different executor

Different storage
● Oracle like Postgres uses MGA, but

there is diffent implementatin
● Postgres – fast rollback, slower

UPDATE
● Oracle – slow rollback, faster

UPDATE

Long transactions
● Postgres needs VACUUM
● Extra long transactions can block

VACUUM
● Close all transactions when it is

possible immediately (Postgres is
much more sensitive on too long
transactions (days).

Different storage
● UPDATE is more expensive on Postgres
● UPDATE on Postgres touch all indexes

on table
● Don‘t update same values in cycle,

when it is possible
● Reduce number if indexes how much it

is possible

Planner
● Oracle try to fix developer‘s bugs or

ORM bugs (reduce useles
selfjoins, ..)

● PostgreSQL doesn‘t do this
● Fix queries, write queries well

Planner
● Postgres know nothing about

functions (functions are black box)
● Oracle (MSSQL) has support for

some functions (COALESCE, …)

EXAMPLE

– CLEAN BUT WITH PERCENTUAL ESTIMATION
SELECT * FROM tab WHERE coalesce(col, 0) = 0;

– WITH STATISTICS BASED ESTIMATION
SELECT * FROM tab WHERE col IS NULL OR col = 0;

– some strange is in design – mix different states together

Optimizer
● Postgres optimizer is fast by

default, but little bit lazy
● Oracle optimizer is slower, but

returns better plans – the problems
with speed are solved by plan
cache (other source of problems)

Optimizer
● Is possible to change limits of PostgreSQL

optimizer
– FROM_COLLAPSE_LIMIT
– JOIN_COLLAPSE_LIMIT
– GEQO_THRESHOLD
– RANDOM_PAGE_COST
– EFFECTIVE_CACHE_SIZE
– WORK_MEM

Attention
● Unrealistics configuration can do

problems

Executor

How to fix it
● Be creative
● Run VACCUM ANALYZE first
● Maybe VACUUM FULL
● Detect a problem and try to ask in mailing list
● PostgreSQL indexes are strong

– Partial indexes,
– Functional indexes (statistics)
–

Indexes

CREATE INDEX ON tab (id) WHERE state = ‘active‘;

CREATE INDEX on tab((upper(name)));

Check
● pg_stat_user_indexes
● pg_stat_user_tables
● EXPLAIN SELECT ...

Tools
● Slow query detection

– pg_stat_statement
– log_min_duration_statement
– auto_explain

● Reports
– PgFouine
– PgBager

● Sharing plans
– Explain.depecs.com

Question

CREATE TABLE foo(a int);
ANALYZE foo;

EXPLAIN SELECT * FROM foo;

– how much rows are expected in EXPLAIN?

Why some queries
are fast on Oracle

and not on PG?
● Different planners (estimators)

some patterns are better supported by Oracle (nvl,
aggpush down, ..), some ugly patterns are
supported by O.

● Different optimizers
from_collapse_limit, join_collapse_limit, GEQO

● Missing implicit plan cache on Postgres
● Slower start of queries on Postgres

due simple and more dynamic implementation
● Extra intensive UPDATEs are slower on Postgres

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20

